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We consider the problem of distributing a vaccine for immunizing a scale-free network against a given virus
or worm. We introduce a method, based on vaccine dissemination, that seems to reflect more accurately what
is expected to occur in real-world networks. Also, since the dissemination is performed using only local
information, the method can be easily employed in practice. Using a random-graph framework, we analyze our
method both mathematically and by means of simulations. We demonstrate its efficacy regarding the trade-off
between the expected number of nodes that receive the vaccine and the network’s resulting vulnerability to
develop an epidemic as the virus or worm attempts to infect one of its nodes. For some scenarios, the method
is seen to render the network practically invulnerable to attacks while requiring only a small fraction of the
nodes to receive the vaccine.
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I. INTRODUCTION

The term “scale-free” is widely used to designate the class
of large networks that have node degrees distributed as a
power law �1,2�, according to which the probability that a
randomly chosen node has degree a is proportional to a−� for
some parameter ��1. There has been a recent surge of in-
terest in scale-free networks, as a great variety of large real-
world networks, such as the Internet, the WWW, social net-
works, and scientific-collaboration networks, have been
empirically observed to have node-degree distributions that
approximately follow a power law �3,4�. In contrast with the
classical random-graph model introduced by Erdős and
Rényi, whose node-degree distribution is the Poisson distri-
bution and is therefore sharply concentrated around its mean
value �5,6�, scale-free networks normally contain nodes with
a wide range of degrees, typically with a few nodes of ex-
tremely high degrees coexisting with a plethora of low-
degree nodes.

In this paper, we consider the problem of preventing vi-
ruses or worms from spreading on scale-free computer net-
works. The fact that node degrees are in this case distributed
according to a power law has a profound impact on the way
the network operates. In particular, it makes the problem of
fighting the proliferation of viruses and other infections
much more challenging, since the presence of high-degree
nodes dramatically increases the rate at which a virus may
propagate �7,8�. For this reason, instead of combating the
proliferation of a virus in an already infected network, we
consider a preventive immunization strategy, which consists
of distributing the appropriate vaccine to a small subset of
the network’s nodes, striving to immunize those nodes that
can more efficiently block the spread of a future infection,
should it occur. The goal of this approach is to distribute the
vaccine to as few nodes as possible while making the net-
work invulnerable to an epidemic, that is, to the occurrence
of a state in which a relatively large number of nodes is
infected.

We note that, even though our focus is on preventing in-
fections by viruses or worms in computer networks, most of

our results and conclusions may also find application in other
domains amenable to modeling by scale-free networks, pro-
vided the notions of an infection and of the transmittal of a
vaccine from one node to another make sense. One example
is the spreading of epidemics in human populations. Another
is the proliferation of errors in networks of bibliographic
citations.

We can measure the efficacy of an immunization strategy
by two indicators: the expected spread, which is the expected
fraction of the network’s nodes that receive the vaccine, and
the expected vulnerability, which is the expected fraction of
the network’s nodes that may become infected when the vi-
rus attempts to infect a randomly chosen node of the immu-
nized network. Clearly, these two indicators are strongly in-
fluenced by how we select the nodes to receive the vaccine.
A simple rule for choosing these nodes is to randomly select
a given fraction of the network’s nodes �8–10�. When ap-
plied to scale-free networks, we know that this rule normally
gives unsatisfactory results, as it only achieves a reasonably
small expected vulnerability for prohibitively high expected
spreads. An alternative rule consists of distributing the vac-
cine to all the nodes that have degrees greater than a given
value �8,9,11�. Despite being more efficient for scale-free
networks than the previous strategy, as it achieves quite a
small expected vulnerability with only a modest expected
spread, applying this rule to real-world networks is known to
be usually difficult �12�. The use of this rule demands global
knowledge regarding the location of the nodes having the
highest degrees, while the nodes of many real-world net-
works may only be assumed to have information that can be
directly inferred from their immediate neighborhoods. Yet
another alternative is to randomly choose some of the net-
work’s nodes and, for each of them, to immunize a randomly
chosen fraction of its neighbors �12�. This rule, however, and
in fact the previous two as well, seem hard to implement in
practice on computer networks, since apparently they require
that the vaccine be somehow transmitted to a given fraction
of the network’s nodes by means other than the network’s
own.

In this paper, we assume that the vaccine enters the net-
work at a single node, called the originator. We assign to this

PHYSICAL REVIEW E 74, 056105 �2006�

1539-3755/2006/74�5�/056105�8� ©2006 The American Physical Society056105-1

http://dx.doi.org/10.1103/PhysRevE.74.056105


node the responsibility of starting the dissemination of the
vaccine by initiating the method called heuristic flooding for
disseminating information in networks �13�. Let u be the
originator. For each neighbor v of u, this method prescribes
that u forward the vaccine to v with probability given by a
heuristic function h�a ,b�, where a and b are, respectively,
the degrees of u and v. Each of the nodes that receive the
vaccine, when receiving it for the first time, proceeds like-
wise and probabilistically forwards the vaccine to its own
neighbors. By not requiring that the nodes of the network
have information beyond what can be inferred from their
immediate neighborhoods, this strategy can be easily used in
practice. Furthermore, it represents more accurately what oc-
curs in real scenarios, since it does not rely on the prior
selection of nodes that characterizes all the three immuniza-
tion strategies mentioned above, but rather assumes that the
vaccine spreads out of a single node �say, the very site of its
development or the site responsible for its distribution� via a
heuristically controlled form of flooding.

Our immunization strategy shares with the chaining strat-
egies of �14� the characteristic that the vaccine may enter the
network at any node, from which it is then passed on to some
of the other nodes of the network. Each of such chaining
strategies embodies a different local policy whereby a node,
having received the vaccine, selects one other node for being
forwarded the vaccine if the fraction of immunized nodes in
the network is still less than some preestablished value f . But
the strategy that we introduce also differs from these chain-
ing strategies in important aspects. One of them is that, if the
forwarding policy at each node is deterministic �e.g., send
the vaccine to the highest-degree neighbor�, then cycling is a
possibility and the fraction f of immunized nodes may never
be achieved. Another, and perhaps the most important one, is
that employing the desired fraction f of immunized nodes to
control the progress of the forward chaining carries with it
the inherent assumption that the number of nodes in the net-
work is known. So, even though the chaining strategies of
�14� are based on local decisions given the network’s size,
requiring that such size be known bespeaks a dependency on
global properties, just as for one of the strategies we dis-
cussed above.

Our strategy has neither of these drawbacks and we think
this is to be credited to a fundamental difference in how the
immunization problem is approached. Instead of aiming at
immunizing some given fraction of the network’s nodes,
what it seeks is to provide a heuristic function that, for a
given class of networks �in the case of this paper, scale-free
networks�, can be expected to immunize as small a fraction
of the network’s nodes as possible while providing a signifi-
cant level of invulnerability. Moreover, it does so indepen-
dently of any network-wide properties, and may then be re-
garded, to the best of our knowledge, as the first of a kind.

It is also worth mentioning that our strategy need not
assume that the network is completely uninfected to begin
with. In fact, in many practical scenarios it is the case that
both immunizing and healing rely on the exact same vaccine.
This is the case, for example, of computer viruses. In such
cases, what our strategy prescribes is that some nodes be
immunized/healed as the vaccine propagates from its node of
entry in the network; as for the remaining nodes, should any

of them be already infected, the guarantee exists that the
infection will be contained. In a similar vein, our strategy
may also lend itself gracefully to the dissemination of new
protection measures that are specific to no infecting agent in
particular. While such a generic approach is arguably full of
difficulties, it seems to be favored by many researchers �cf.
�15� and references therein�.

We organize the remainder of the paper as follows. In Sec.
II, we use a random-graph framework and the formalism
introduced in �16–18�, whose details are discussed as they
are needed, to obtain mathematical results for the aforemen-
tioned efficacy indicators. We utilize our analytical results in
Sec. III to discover the properties that an ideal heuristic func-
tion should have to be efficient. We then introduce a heuristic
function that seeks to approximate this ideal and therefore
can be used to disseminate the vaccine. In Sec. IV, we dis-
cuss simulation results on random graphs having node de-
grees distributed according to a power law. Our results reveal
that this heuristic function performs very attractively for the
ranges of � �the distribution’s parameter� that typically are
thought to hold for networks like the Internet �i.e., � below
roughly 2.5�. They also agree satisfactorily with our analyti-
cal predictions. We conclude in Sec. V.

II. MATHEMATICAL ANALYSIS

Let G be a random graph having n nodes, whose degrees
are distributed independently from one another and identi-
cally to a random variable KG. We assume that the nodes of
G are interconnected in an independent way given their de-
grees, which therefore remain independent. We base our
mathematical analysis of this section on the formalism intro-
duced in �18� and target the case in which G has a formally
infinite number of nodes. �We also adopt the usual notation
for the asymptotic behavior of functions: f�x� is �(g�x�) if
and only if there exist positive constants C1, C2, and x0 such
that C1g�x�� f�x��C2g�x� for all x�x0; f�x� is o(g�x�) if
and only if limx→�f�x� /g�x�=0.�

Let PG�a� be the probability that a randomly chosen node
of G has degree a, i.e., the probability that KG=a. The aver-
age degree in G, denoted by ZG, is clearly

ZG = �
a=0

n−1

aPG�a� . �1�

Given that the degrees of two adjacent nodes are independent
from each other, the probability that some node’s neighbor
has degree b is identical to the expected fraction of edges
incident to degree-b nodes, which is given by

bPG�b�

�
a=0

n−1

aPG�a�

=
bPG�b�

ZG
. �2�

From �16,18�, a necessary and sufficient condition for a
size-��n� connected component to almost surely exist in G
�i.e., to exist with a probability that approaches 1 as n→�� is
that
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�
b=1

n−1

�b − 1�
bPG�b�

ZG
� 1, �3�

which intuitively means that, given a randomly chosen node
u of G, a size-��n� connected component exists almost
surely if and only if a neighbor of u is expected to have more
than one neighbor besides u. We denote such a size-��n�
connected component of G �its giant connected component�
by GCCG. When �3� is satisfied, with high probability all the
other connected components of G are small, comprising only
o�n� nodes, and G is said to be above the phase transition
that gives rise to GCCG. On the other hand, when �3� is not
satisfied, with high probability all the connected components
of G are small, each consisting of o�n� nodes, and G is said
to be below the phase transition that gives rise to GCCG.

Given a randomly chosen node u of G and a neighbor v of
u, we define the reach of u through v as the set of nodes that
can be reached by a path starting at u and whose first edge is
�u ,v�. A node belongs to GCCG if and only if it has at least
one neighbor through which its reach contains a large, size-
��n� number of nodes. Let q be the probability that a node
has a small, size-o�n� reach through a given neighbor. The
probability that a degree-a node belongs to GCCG is then 1
−qa, and the probability that a randomly chosen node of G
belongs to GCCG, which we denote by �G, is

�G = 1 − �
a=0

n−1

qaPG�a� . �4�

The probability q that u has a small, size-o�n� reach through
v can be obtained from the probability that v itself has a
small, size-o�n� reach through each of its other neighbors
�i.e., excluding u�. Since the probability that two neighbors
of u have another common neighbor �i.e., besides u� varies
with n proportionally to n−1 �18�, which for large n is negli-
gible, the probability that v has a small, size-o�n� reach
through a given neighbor is also q, thus leading to

q = �
b=1

n−1

qb−1bPG�b�
ZG

. �5�

This equation can be solved numerically and then used in Eq.
�4� to obtain �G.

From now on, we assume that G is above the phase tran-
sition and, therefore, GCCG exists. Furthermore, since G can
be unconnected and real-world computer networks are nor-
mally connected, we assume that it is the graph induced by
GCCG, rather than G itself, that models the network, and also
condition the remainder of our analysis accordingly.

A. Expected spread

In this section, we calculate the expected spread in GCCG,
which is denoted by Ps and consists of the expected fraction
of the nodes of GCCG that are immunized when a vaccine is
distributed using the heuristic flooding described in Sec. I.
We resort to the same method of analysis developed in �13�.
Let S be a directed subgraph of G that spans all the nodes of
G. For a degree-a node u and a degree-b neighbor v of u in

G, the probability that the directed edge �u→v� exists in S is
given by h�a ,b�, the heuristic function employed during the
vaccine dissemination. Before proceeding to the calculation
of Ps, we pause for a brief study of S.

The neighbors of a node u in S can be classified into two
different types: the in-neighbors, those from which an edge
exists directed toward u; and the out-neighbors, those toward
which an edge exists directed from u. If a directed path exists
starting at some node u and ending at another node v, then
we say that u reaches v in S or that v is in the reach of u in
S. Note that if u receives the vaccine, then the reach of u in
S is part of the set of nodes that become immunized.

The connected components of a directed graph can also
be of two basic types. First, there are the weakly connected
components, which are constituted by the nodes that can
reach one another by undirected paths, i.e., paths for which
the directions of the edges are disregarded. The other type is
that of the strongly connected components, each comprising
a maximal set of nodes that can both reach and be reached
from one another.

Similarly to the case of the undirected graph G, there is a
criterion for deciding whether S almost surely has a size-
��n� weakly connected component, commonly known as the
giant weakly connected component of S, denoted by
GWCCS. Likewise, there is another criterion according to
which S almost surely has a size-��n� strongly connected
component, commonly referred to as the giant strongly con-
nected component, denoted by GSCCS. Clearly, when both
GWCCS and GSCCS exist, as we henceforth assume, all the
nodes of GSCCS belong also to GWCCS, and all the nodes of
GWCCS belong also to GCCG.

Since GSCCS exists by assumption, we can define two
other size-��n� connected components of S, which we refer
to as the giant in-component �GINS�, formed by the nodes
that can reach GSCCS, and the giant out-component
�GOUTS�, formed by the nodes reachable from GSCCS. Note
that, by definition, the nodes of GSCCS belong also to both
GINS and GOUTS. We denote by �S

in and �S
out the expected

fraction of the nodes of G that belong to, respectively, GINS
and GOUTS. Figure 1 illustrates an instance of graph G
�Fig. 1�a�� and a possible instance of its directed subgraph S
�Fig. 1�b��.

Assuming that the originator is randomly chosen among
the nodes of GCCG, the vaccine is guaranteed to be distrib-
uted to a size-��n� set of nodes if the originator belongs to
GINS, which happens with probability �S

in /�G. When this is
the case, the nodes that receive the vaccine either belong to
GOUTS, corresponding to a fraction �S

out /�G of the nodes of
GCCG, or are not in GOUTS despite being reachable from
the originator, and then amount to a small, size-o�n� number
of nodes. Neglecting the latter nodes is equivalent to assum-
ing that nodes receive the vaccine only if the originator is in
GINS. In this case, only the nodes in GOUTS receive the
vaccine and we have

Ps =
�S

in�S
out

�G
2 . �6�
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In order to obtain �S
in, recall that the nodes of GINS are the

only ones that have a non-negligible reach. Considering a
degree-a node u of G and a degree-b neighbor v of u in G,
we say that v is a dead end with respect to u in S if either
�u→v� is not an edge of S, or it is but the reach of u through
v in S is negligible, consisting of only o�n� nodes. Denoting
by qb

in the conditional probability that the reach of u through
v in S is negligible given that u is an in-neighbor of v in S,
we obtain the probability that v is a dead end with respect to
u in S, which is

1 − h�a,b� + h�a,b�qb
in. �7�

And since the probability that v has degree b is given by Eq.
�2�, the probability that a given neighbor of a degree-a node
is a dead end with respect to it in S, which we denote by wa

in,
is

wa
in = �

b=1

n−1

�1 − h�a,b� + h�a,b�qb
in�

bPG�b�
ZG

. �8�

Because a node belongs to GINS if and only if at least one of
its neighbors in G is not a dead end with respect to it in S, we
arrive at

�S
in = 1 − �

a=0

n−1

�wa
in�aPG�a� . �9�

As a means to calculate qb
in, let us consider a degree-b

node v of G reached by following a directed edge �u→v� of
S. The reach of u through v in S is negligible, which happens
with probability qb

in, if and only if all of the other b−1 neigh-
bors of v in G �i.e., excluding u� are themselves dead ends
with respect to v in S. This clearly leads to

qb
in = �wb

in�b−1. �10�

Equations �8� and �10� can be put together to yield another
equation where wa

in is a function of all the other win’s. This

equation can then be solved numerically to obtain �S
in via Eq.

�9�.
We can follow a completely analogous derivation and ob-

tain �S
out by noting that a node belongs to GOUTS if and only

if it can be reached from a size-��n� set of nodes. Let u be a
degree-a node of G and v a neighbor of u in G. We denote by
wa

out the probability that either u is not an out-neighbor of v
in S or is but the number of nodes that can reach u through v
in S is small, consisting of only o�n� nodes. Also, we denote
by qb

out the conditional probability that the number of nodes
that can reach u through v in S is small, given that the degree
of v in G is b and u is an out-neighbor of v. In a way
analogous to the one that led to Eqs. �8�–�10�, we obtain

wa
out = �

b=1

n−1

�1 − h�b,a� + h�b,a�qb
out�

bPG�b�
ZG

, �11�

�S
out = 1 − �

a=0

n−1

�wa
out�aPG�a� , �12�

and

qb
out = �wb

out�b−1. �13�

Also, and identically to the derivation of �S
in, we can unify

Eqs. �11� and �13� and calculate the value of each wa
out nu-

merically to obtain �S
out via Eq. �12�.

B. Expected vulnerability

Consistently with the simplifying assumptions of Sec.
II A, we keep assuming that no node is immunized when the
originator does not belong to GINS. When this happens, all
nodes of GCCG remain vulnerable to the virus, and if the
virus infects a node of GCCG it may propagate until the
entire GCCG is infected. Let us analyze the case in which the
originator does belong to GINS.

As before, we assume that only the nodes of GOUTS re-
ceive the vaccine. Let V be an undirected subgraph of G that
spans all the nodes of G, and let an edge �u ,v� of G belong
to V if and only if neither u nor v belongs to GOUTS. That is,
given a certain instance of the subgraph S, subgraph V con-
tains all the edges of G that are not incident to nodes of
GOUTS. Clearly, the edges of V represent the edges through
which the virus may propagate if it reaches either of an
edge’s �unimmunized� end nodes. Figure 2 illustrates the
subgraph V corresponding to the G and S instances of Fig. 1.

Once again, and similarly to the case of G, a criterion
exists for deciding whether a size-��n� connected compo-
nent almost surely exists in V. We denote such a component
by GCCV. When it does exist, and since all the other con-
nected components of V contain with high probability only
o�n� nodes �which we again neglect�, a virus may only pro-
liferate into a large, size-��n� set of nodes if it first infects a
node of GCCV. This, of course, is predicated upon the origi-
nator being in GINS and dissemination taking place exclu-
sively inside GOUTS, the assumptions of Sec. II A.

We define the expected vulnerability of GCCG, denoted
by Pv, as the fraction of the nodes of GCCG that may become

FIG. 1. A G instance �a� and one possible instance of the di-
rected subgraph S of the G instance �b�. Part �b� also shows the
nodes belonging to GSCCS �filled circles�, GINS �filled circles and
triangles�, and GOUTS �filled circles and filled squares�.
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infected when the virus attempts to infect a randomly chosen
node of GCCG. Let �V be the fraction of the nodes of G that
belong to GCCV. If the originator does not belong to GINS
�which occurs with probability 1−�S

in /�G�, then Pv=1; if it
does belong to GINS �with probability �S

in /�G�, then Pv
=�V /�G if and only if the virus first infects a node of GCCV,
which occurs with probability �V /�G. We then have

Pv = 1 −
�S

in

�G
+

�S
in

�G
� �V

�G
�2

. �14�

Henceforth in this section we concentrate on calculating
�V for the case in which GCCV does exist. Clearly, a node of
G belongs to GCCV only if it does not belong to GOUTS.
Through the remainder of the section, let u be a degree-a
node of G that does not belong to GOUTS and v a neighbor
of u in G. Given that v has degree b, we define hb�a as the
probability that the edge �v→u� exists in S. Since u does not
belong to GOUTS, node v must be such that it satisfies one of
the following conditions: either edge �v→u� does not exist
in S, which happens with probability 1−h�b ,a�, or �v→u�
exists in S but the number of nodes that can reach u through
v is small, which occurs with probability h�b ,a�qb

out. We can
then express hb�a as the ratio of the probability that the latter
condition is satisfied to the probability that either the former
or the latter is. This leads to

hb�a =
h�b,a�qb

out

1 − h�b,a� + h�b,a�qb
out . �15�

Now let pb�a be the probability that v has degree b in G.
Clearly, pb�a is proportional to the joint probability that v
satisfies one of the above conditions regarding the existence
of edge �v→u� in S and also that a node’s neighbor in G has
degree b. That is, pb�a is proportional to �1−h�b ,a�
+h�b ,a�qb

out�bPG�b� /ZG. Using Eq. �11�, we obtain

pb�a = �1 − h�b,a� + h�b,a�qb
out

wa
out �bPG�b�

ZG
. �16�

Let b be the degree of v in G. Because u does not belong
to GOUTS, nodes u and v are neighbors in V if and only if v
does not belong to GOUTS either. If �v→u� is an edge of S,
which occurs with probability hb�a, then v is obviously not in
GOUTS, as it would otherwise make u belong to GOUTS
along with it. On the other hand, if �v→u� is not an edge of

S �with probability 1−hb�a�, then v does not belong to
GOUTS if and only if the number of nodes that can reach it
in S is small, which happens with probability qb

out. It follows
that the probability that u and v are neighbors in V is given
by

hb�a + �1 − hb�a�qb
out. �17�

When u and v are indeed neighbors in V, we define qb
V as the

probability that u has a small reach in V through v. We say
that v is a dead end with respect to u in V if either v is not a
neighbor of u in V, which occurs with probability 1− �hb�a
+ �1−hb�a�qb

out�, or it is but the reach of u through v in V is
small, which occurs with probability �hb�a+ �1−hb�a�qb

out�qb
V.

Thus, the probability that v is a dead end with respect to u in
V is

1 − �hb�a + �1 − hb�a�qb
out� + �hb�a + �1 − hb�a�qb

out�qb
V

= hb�aqb
V + �1 − hb�a��1 − qb

out + qb
outqb

V� , �18�

so the probability that a neighbor of u is a dead end with
respect to u in V, which we denote by wa

V, is clearly

wa
V = �

b=1

n−1

�hb�aqb
V + �1 − hb�a��1 − qb

out + qb
outqb

V��pb�a. �19�

In order to calculate qb
V, notice that the reach of u through

v in V is small if and only if all other b−1 neighbors of v in
G are themselves dead ends with respect to v in V. Then,
assuming that the degrees of a node’s neighbors in G remain
independent from one another even under the condition that
the node does not belong to GOUTS, we have

qb
V = �wb

V�b−1. �20�

Putting Eqs. �19� and �20� together leads to an equation
where wa

V is a function of all the other wV’s, which can then
be solved numerically for 0�a�n−1.

We are finally in a position to calculate the value of �V.
Let u be a randomly chosen node of G having degree a. In
order to belong to GCCV, node u must not belong to GOUTS,
which occurs with probability �wa

out�a. Furthermore, u be-
longs to GCCV only if at least one of its neighbors is not a
dead end with respect to it in V, which occurs with probabil-
ity 1− �wa

V�a. It then follows that

�V = �
a=0

n−1

�wa
out�a�1 − �wa

V�a�PG�a� . �21�

III. THE HEURISTIC FUNCTION

The efficiency of heuristic flooding as a means of immu-
nizing a network depends heavily on the choice of the heu-
ristic function h�a ,b�. Before introducing our heuristic func-
tion, we elaborate on the properties of subgraph S that we
may expect to lead to good results for Ps and Pv.

First of all, it is clear that S must be above the phase
transition that gives rise to GSCCS, thereby guaranteeing that
GSCCS, GINS, and GOUTS almost surely exist. When this is

FIG. 2. The graph V that corresponds to the G and S instances of
Fig. 1. Nodes represented by filled circles or filled squares belong to
GOUTS.
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the case, the nodes of GINS are the most suitable ones for
being the originator, as they can immunize a non-negligible
number of nodes. But since we cannot assume any prior
information on the originator, GINS should contain as many
nodes as possible in order to make the probability that the
originator is chosen from outside it as small as possible. With
regard to GOUTS, we know that it contains the nodes that
receive the vaccine when the originator belongs to GINS. In
order to prevent an excessive number of nodes from receiv-
ing the vaccine, the size of GOUTS should be kept to modest
values. Putting these two observations together, we ideally
want GINS to span all the nodes of the network, GSCCS to
contain only the nodes that can more efficiently block the
spreading of an infection, and GOUTS to be the same as
GSCCS.

Since we know that immunizing the nodes with the high-
est degrees is an efficient way to prevent epidemics in scale-
free networks �8,9,11�, we introduce in this section a heuris-
tic function that stimulates the transmission of the vaccine to
high-degree nodes. Introducing a parameter ��0, and con-
sidering a degree-a node u that has the vaccine and a degree-
b neighbor v of u, our heuristic function h�a ,b�, which gives
the probability that u sends the vaccine to v, is defined as
follows:

�i� If b=1, that is, v has no neighbor besides u, then
h�a ,b�=0 and u deterministically decides not to send the
vaccine to v. In this case, since u is already immune, should
v become infected it can transmit the virus to no other node,
so we choose not to give v the vaccine.

�ii� If a�2�b, that is, u has degree at most 2 and v has
degree at least 2, then h�a ,b�=1 and u deterministically de-
cides to send the vaccine to v. This is meant to force some
low-degree nodes to forward the vaccine, thereby precluding
a premature conclusion of heuristic flooding and, as a con-
sequence, leading to a larger GINS.

�iii� For all the other positive values of a and b, we let

h�a,b� = tanh� b − 1

�a − 2��� . �22�

Clearly, for fixed a�2, h�a ,b� increases with b, so the vac-
cine is more likely to be transmitted to high-degree nodes.
For fixed b�1, h�a ,b� decreases with a, thus reflecting the
intuition that, when u is a high-degree node, sending the
vaccine to v may be unnecessary even if v is a high-degree
node �there are probably other paths through which the vac-
cine can be transmitted from u to v�.

Figure 3 shows two plots illustrating the heuristic function
of Eq. �22� for �=0.7 �Fig. 3�a�� and �=1.0 �Fig. 3�b��.

IV. SIMULATION RESULTS

We have conducted extensive simulations on random
graphs with node degrees distributed according to a power
law. Generating such a graph is achieved in two phases �18�.
Let u1 ,u2 , . . . ,un be the nodes of the random graph we want
to generate. In the first phase, for i=1, . . . ,n we sample the
degree di of each ui from the power-law distribution, obtain-
ing the so-called degree sequence of the graph. If �i=1

n di turns

out to be odd, then we discard the entire degree sequence and
sample a new one, repeating the process until the sum of the
degrees comes out even. In the second phase, we consider an
imaginary urn having �i=1

n di labeled balls, the labels of di of
them being ui. We then successively remove pairs of balls
from the urn until it has no more balls. For each pair we
remove—say, of labels ui and uj—we add edge �ui ,uj� to the
graph. This method can produce graphs having multiple
edges �more than one edge joining the same two nodes� or
self-loops �an edge joining a node to itself�, but it has the
advantage of generating graphs whose degrees remain inde-
pendent even after the edges are added, which is a core as-
sumption of our analysis.

We carried out our simulations for n=10 000 and 2��
�3. For each value of �, we generated 500 G instances
�each one almost surely above the phase transition that gives
rise to GCCG, since in the scale-free case the condition in �3�
becomes �	3.47 �13��. For each G instance, we used the
heuristic h�a ,b� to both sample 1000 instances of the sub-
graph S and, in an independent way, conduct 1000 vaccine
disseminations by heuristic flooding from an originator se-
lected randomly among the nodes of the largest connected
component of the G instance. For each S instance, we se-
lected the largest strongly connected component and calcu-
lated the sizes of the corresponding in-component �counting
the nodes that can reach the strongly connected component�
and out-component �counting the nodes that can be reached

FIG. 3. Plots of the heuristic function given by Eq. �22� for �
=0.7 �a� and �=1.0 �b�.

ALEXANDRE O. STAUFFER AND VALMIR C. BARBOSA PHYSICAL REVIEW E 74, 056105 �2006�

056105-6



from the strongly connected component�. We then obtained
the expected sizes of GINS and GOUTS by averaging these
quantities over the 500 000 samples. For each vaccine dis-
semination, we calculated the fraction of nodes that receive
the vaccine and the fraction of nodes to which an infection
may spread when an attempt at infecting a randomly chosen
node inside the largest connected component of G takes
place. We then obtained Ps and Pv by averaging these quan-
tities over the 500 000 samples.

Simulation results are shown in Fig. 4 for �=0.1, 0.4, 0.7,
and 1.0. We note, in general, a satisfactory agreement be-
tween analytic and simulation results, with the exception of
part �d�, in which case the deviation may be attributed to the
approximations made during the derivation of �V in Sec. II B
to yield Eq. �21�.

When ��2.5, the plots for �S
in /�G and �S

out /�G �Figs. 4�a�
and 4�b�� reveal that the heuristic function introduced in Sec.
III results in a GINS that spans almost all the nodes of GCCG,
while the size of GOUTS keeps to a relatively modest frac-
tion of GCCG. For example, for ��2.5 and �=1.0, the rela-
tive size of GINS is always above 0.97 and the relative size
of GOUTS is always below 0.13. For ��2.5, the relative size
of GINS decreases with �, thus evidencing that heuristic
flooding has more difficulty disseminating the vaccine when
the graph is sparser.

Owing to Ps being given by ��S
in /�G���S

out /�G� �cf. Eq.
�6��, and to �S

in /�G being relatively close to 1 �Fig. 4�a��, the
plots for Ps �Fig. 4�c�� are of course similar to the plots for
�S

out /�G �Fig. 4�b��. Furthermore, given a value of �, Ps de-
creases with �, which means that heuristic flooding spreads
through a smaller number of nodes when the graph is sparser,
as, in this case, there are fewer paths conducting to the high-
degree nodes.

As for Pv �Fig. 4�d��, we note that, for ��2.5, Pv is
nearly zero. This result is a natural consequence both of the
guiding principle of the heuristic introduced in Sec. III,
which ascribes more probability for transmitting the vaccine
to nodes having higher degrees, and of the result for �S

in /�G
�Fig. 4�a��, which indicates that GINS spans almost all the
nodes of GCCG. As � is increased to values greater than 2.5,
Pv moves farther away from zero, since the size of GINS
decreases and, therefore, the probability that heuristic flood-
ing distributes the vaccine to only a small number of nodes
increases. Regarding the value of �, we note a clear trade-off
between Ps and Pv. If we were to adjust � in such a way as
to decrease Ps, we would have an increase in Pv, which
shows that the number of immunized nodes has a direct im-
pact on the resulting vulnerability of the network.

V. CONCLUSION

We have considered in this paper the problem of immu-
nizing a scale-free network against a virus or worm. We in-
troduced an immunization strategy that we believe reflects
more accurately what happens in real scenarios. In our strat-
egy, we assume that the vaccine enters the network at exactly
one node, in general the site of the vaccine’s development or
the site in charge of its distribution, for example. This node
begins the dissemination of the vaccine by heuristic flooding,
aiming at immunizing the nodes that have the highest de-
grees. With this purpose in mind, we introduced a heuristic
function that gives more probability to forwarding the vac-
cine toward nodes with higher degrees.

We obtained analytical and simulation results on random
graphs having node degrees distributed according to a power
law. Our mathematical analysis has innovative aspects that

FIG. 4. Simulation results of
vaccine dissemination by heuristic
flooding. Solid lines give the ana-
lytic predictions.
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we expect may shed some light on obtaining analytical re-
sults for similar distributed algorithms. Also, we hope our
analysis can contribute to the development of new heuristic
functions for vaccine dissemination. With regard to our
simulation results, they show satisfactory agreement with our
mathematical analysis and highlight the expected trade-off
between the number of nodes that receive the vaccine and the
vulnerability of the network to future infections. Especially
for power laws with relatively small value for the parameter
�, our heuristic function achieves very good results, making
the network practically invulnerable to an epidemic while
requiring the immunization of only roughly 10% of the
nodes.

Our strategy, however, is not without its drawbacks. For
example, when GINS spans only a relatively small fraction of
GCCG, and depending on the values of � and �, the prob-
ability that only very few nodes are immunized is non-
negligible and given by the complement of the data in Fig.
4�a�. In addition, and notwithstanding the fact that for every
value of � in the range we studied there exists a value of �
that yields satisfactory expected invulnerability �cf. Fig.
4�d��, in some cases deciding whether to apply the method
depending on the value of � may be an issue. While in such

cases requiring knowledge of the value of � would bespeak
an inherent dependency of the strategy upon a global prop-
erty of the network, we note that such knowledge is not
needed in general. Rather, it would be sufficient in such
cases merely to estimate how the value of � relates to the
apparent threshold of roughly 2.5 that seems to divide the
very successful scenarios from the others. But such an esti-
mate is intimately related to how connected G is, which
seems to be a much simpler property of which the individual
nodes may have some knowledge.

We note, finally, that one possible direction in which this
paper’s research may be extended, in addition to the search
for other heuristic functions, is that of allowing for multiple
concurrent initiators. While algorithmically �i.e., from the
perspective of flooding the network� such an extension is
trivial, extending the analysis of Sec. II is expected to be a
significantly more complex endeavor.
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